a2 United States Patent

Liun

US009208235B1

US 9,208,235 B1
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)
(73)

")

@
(22)
(1)
(52)

(58)

SYSTEMS AND METHODS FOR PROFILING

WEB APPLICATIONS

Applicant: Symantec Corporation, Mountain View,
CA (US)

Inventor: Yin Liu, Sunnyvale, CA (US)

Assignee: Symantec Corporation, Mountain View,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 247 days.

Appl. No.: 13/793,663

Filed: Mar. 11,2013

Int. CI.

GOGF 17/30 (2006.01)

U.S. CL

CPC e GOG6F 17/30864 (2013.01)

Field of Classification Search

CPC ..o GOG6F 21/5666; GO6F 21/56;, GO6F
17/30126; GOGF 17/3089

USPC e 707/709; 726/22, 24

See application file for complete search history.

100 \

Device 102

Profiling Module /08

Web Client 170

Display 112

(56) References Cited

U.S. PATENT DOCUMENTS

8,516,590 B1* 82013 Ranadiveetal. 726/24

8,555,391 B1* 10/2013 Demiretal. 726/24

8,683,584 B1* 3/2014 Daswani et al. . 726/22

2011/0197177 Al* 82011 Mony 7177115
OTHER PUBLICATIONS

Shreeraj Shah; Non-Patent Literature “Hacking Web 2.0 Applica-
tions with Firefox”; Symantec Connect; Nov. 2, 2013, 8 pages.™

* cited by examiner

Primary Examiner — Monica Pyo
(74) Attorney, Agent, or Firm — Holland & Hart, LLP

(57) ABSTRACT

A computer-implemented method for profiling a web appli-
cation. A web page containing JavaScript (JS) is crawled. At
least a portion of the JS is extracted from the crawled web
page. An automated simulation of the extracted JS is
executed.

16 Claims, 12 Drawing Sheets

Web Server /06

Web Page 114

US 9,208,235 B1

Sheet 1 of 12

Dec. 8, 2015

U.S. Patent

FIT 938 QOM

07 10A15S QI

["OIAd

FOT JI0MIDN

ZIT Aerdsiq

17309 QPOM

Q0T SIpOIN Suryoid

20T 20180

H 00T

US 9,208,235 B1

Sheet 2 of 12

Dec. 8, 2015

U.S. Patent

¢ OIA

901 SINPON SulfoId

90 RAIRS

$07 Wuoseaer

#0¢ uoneoriddy qom

D-9()] 19AIS O M\

00¢ \

Z0Z uoneorddy

TIT Kerdsiq

7301 4OM

D207 91420

US 9,208,235 B1

Sheet 3 of 12

Dec. 8, 2015

U.S. Patent

£ OIA

FOE SINpOIN SuizAjeuy Sf

ZOE SINPOIN Sur[mer) qo M

P-§01 SINPON u1goid

US 9,208,235 B1

Sheet 4 of 12

Dec. 8, 2015

U.S. Patent

V OIA

70F INPOIN SuizAeuy

Z0F 9pojN Sunoenxyg

D-Z0€ SINPOIA SuT[mer) gapm

US 9,208,235 B1

Sheet 5 of 12

Dec. 8, 2015

U.S. Patent

$ OIA

Q0C SNPOIA Uono3R(J IdV

< 9NPOJA] UOTI0R(J SSA0Y

F0C SINPOIA UOTI0919(] UOTIORINUT-IIS)

Z0S dMmpoN Io3aadioyur S

D-F(§ SINPON SurzAJeuy Sf

U.S. Patent Dec. 8, 2015 Sheet 6 of 12 US 9,208,235 B1

600 \

602 Crawl a web page containing JavaScript (JS)
604 ~ Extract at lcast a portion of the JS from the crawled web page
606 ~ Execute an automated simulation of the extracted JS

FIG. 6

U.S. Patent Dec. 8, 2015 Sheet 7 of 12 US 9,208,235 B1

700 \

702

704

706

708

710

712

Extract at lcast a portion of JS from a crawlcd web page

A 4

Analyze a document object model (DOM) structure of the web page

A 4

Generate a mock object that mimics an object from the DOM structurc of

the web page

:

]

Generating a symbolic value configured to interact with the mock object

A 4

Modify a JS interpreter to incorporate the mock object and to accept the

symbolic value

y

e

Track, by the modified JS interpreter, the propagation of the symbolic
value throughout the execution of the automated simulation of the
extracted JS

FIG. 7

U.S. Patent Dec. 8, 2015 Sheet 8 of 12 US 9,208,235 B1

800 \

802 Analyze a document object model (DOM) structure of a web page

I

Identify a user-interaction driven event based at least in part on the

8§04 ~ _
analysis of the DOM structure

:

806 ~- Dectect one or more execution paths of the user-interaction driven event

;

Estimate an effect of the one or more detected execution paths of the

808 ~
user-interaction driven event
8§10 ~ Summarize the estimated effects of the detected execution paths

FIG. 8

U.S. Patent Dec. 8, 2015 Sheet 9 of 12 US 9,208,235 B1

900 \

902 Execute an automated simulation of JS extracted from a web page

A 4

Determine, based on the automated simulation of the extracted IS,

904 ~ . .
whether the JS makes a request to access a portion of a device
A 4
906 ~ Determine whether the access is authorized

908 ~ Determine at least a level and a type of access requested by the JS

FIG. 9

U.S. Patent Dec. 8, 2015 Sheet 10 of 12 US 9,208,235 B1

IOOO\

1002 ~ Execute an automated simulation of JS extracted from a web page

:

Dctcct, bascd on the automated simulation of the cxtracted JS, whether a

1004 ~ predetermined type of Application Programming Interface (API) is

requested by the IS

:

Determine whether the IS implements a predetermined security check in

1006 ~
rclation to the JS accessing the requested API

FIG. 10

U.S. Patent Dec. 8, 2015 Sheet 11 of 12 US 9,208,235 B1

1100\

1102 Execute an automated simulation of JS extracted from a web page
A 4
1104 Select one or more Application Programming Interfaces (APls) known to
bc uscd in association with malwarc
v
Determine, based on the automated simulation of the extracted JS,
1106 ~

whether the JS utilizes the one or more selected APIs

FIG. 11

US 9,208,235 B1

Sheet 12 of 12

Dec. 8, 2015

U.S. Patent

I OIAd

8ECT

07r¢ \M NI0MIN
NS prCT joutwy) 0191
Ioyeads
81 [eondo
0l e 9cct S = rICI
snd Emwm%z g omed EMMMMQM omwwmz L9908
1S0S = . dsn Keydsia
! ! ! |
crel crel = = 0€CI §ccl recl SIci 91c1
oorION] oALI JSIQ goect voeci 00RJIOIU] Ia[[onuo) I9[[01U0)) 1104 1depy
onpny reondo Ve VeH Y AVIN asn PIBOQAIY] AN Kepdsig
.
cecl 077T 0sCl §0CT roci
el ce Q0BLIONU] IOT[OIJUO! J10SS0001
! 10g [PLISS 2 1l J N 3
81 Addopg : SHOMION o/1 4-§01 SINPON suljyoId [enud)
90¢1
KIOWSN WR)SAS
S vl
- WIOpON
rECI 0021

US 9,208,235 Bl

1
SYSTEMS AND METHODS FOR PROFILING
WEB APPLICATIONS

BACKGROUND

The use of computer systems and computer-related tech-
nologies continues to increase at a rapid pace. This increased
use of computer systems has influenced the advances made to
computer-related technologies. Indeed, computer systems
have increasingly become an integral part of the business
world and the activities of individual consumers. Computer
systems may be used to carry out several business, industry,
and academic endeavors. The wide-spread use of computers
has been accelerated by the increased use of computer net-
works, including the Internet.

Many businesses use one or more computer networks to
communicate and share data between the various computers
connected to the networks. The productivity and efficiency of
employees often require human and computer interaction.
Users of computer technologies continue to demand an
increase in the efficiency of these technologies. Improving the
efficiency of computer technologies is always desirable to
anyone who uses and relies on computers.

Computing systems may execute applications from mul-
tiple sources. Applications may be delivered via physical
media such as compact disc (CD), digital video disc (DVD),
universal serial bus (USB) thumb drive, as well as through
“app stores.” Additionally, applications may be delivered and
executed in real-time over the internet, such as web applica-
tions. However, unlike applications delivered via physical
media and through app stores, web applications may be deliv-
ered without a vetting process to determine potential privacy
and security concerns, thereby putting computing systems
and personal data at risk.

SUMMARY

According to at least one embodiment, a computer-imple-
mented method for profiling a web application is described. A
web page containing JAVASCRIPT® (JS) may be crawled. At
least a portion of the JS may be extracted from the crawled
web page. An automated simulation of the extracted JS may
be executed.

In one embodiment, a document object model (DOM)
structure of the web page may be analyzed. The portion of
extracted JS may be based at least in part on a result of the
analysis of the DOM structure. In one configuration, a mock
object may be generated that mimics an object from the DOM
structure of the web page and a symbolic value may be gen-
erated to interact with the mock object. The execution of the
automated simulation of the extracted JS may include utiliz-
ing the symbolic value in relation to the mock object. In some
embodiments, a JS interpreter may be modified to incorporate
the mock object, accept the symbolic value, and track the
propagation of the symbolic value throughout the execution
of the automated simulation of the extracted JS.

In one embodiment, a user-interaction driven event may be
identified based at least in part on the analysis of the DOM
structure. In some embodiments, one or more execution paths
of the user-interaction driven event may be detected. In one
configuration, an effect of the one or more detected execution
paths of the user-interaction driven event may be estimated
and the estimated effects of the detected execution paths may
be summarized.

In one embodiment, based on the automated simulation of
the extracted JS, a determination may be made whether the JS
makes a request to access a portion of a device. In one con-

10

15

20

25

30

35

40

45

50

55

60

2

figuration, a determination may be made whether the access is
authorized, and at least a level and a type of access requested
by the JS may be determined.

In one embodiment, based on the automated simulation of
the extracted JS, it may be detected whether a predetermined
type of application programming interface (API) is requested
by the JS. In one configuration, a determination may be made
whether the JS implements a predetermined security check in
relation to the JS accessing the requested API.

In one embodiment, one or more application programming
interfaces (APIs) known to be used in association with mal-
ware may be selected, and based on the automated simulation
of'the extracted JS, a determination may be made whether the
JS utilizes the one or more selected APIs.

A computing device configured to profile a web application
is also described. The device may include a processor and
memory in electronic communication with the processor. The
memory may store instructions that may be executable by the
processor to crawl a web page containing JAVASCRIPT®
(JS), extract at least a portion of the JS from the crawled web
page, and execute an automated simulation of the extracted
IS.

A computer-program product to profile a web application
is also described. The computer-program product may
include a non-transitory computer-readable medium that
stores instructions. The instructions may be executable by the
processor to crawl a web page containing JAVASCRIPT®
(JS), extract at least a portion of the JS from the crawled web
page, and execute an automated simulation of the extracted
IS.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram illustrating one embodiment of
an environment in which the present systems and methods
may be implemented;

FIG. 2 is a block diagram illustrating another embodiment
of'an environment in which the present systems and methods
may be implemented;

FIG. 3 is a block diagram illustrating one example of a
profiling module;

FIG. 4 is a block diagram illustrating one example of a web
crawling module;

FIG. 5 is a block diagram illustrating one example of'a JS
analyzing module;

FIG. 6 is a flow diagram illustrating one embodiment of a
method for profiling a web application;

FIG. 7 is a flow diagram illustrating one embodiment of a
method for implementing an automated simulation of JAVA-
SCRIPT®;

FIG. 8 is a flow diagram illustrating one embodiment of a
method for static analysis;

FIG. 9 is a flow diagram illustrating one embodiment of a
method for detecting unauthorized access by a web applica-
tion;

US 9,208,235 Bl

3

FIG. 10 is a flow diagram illustrating one embodiment of
another method for determining security vulnerabilities of a
web application;

FIG. 11 is a flow diagram illustrating one embodiment of
another method for detecting a potential phishing attack from
a web application; and

FIG. 12 depicts a block diagram of a computer system
suitable for implementing the present systems and methods.

While the embodiments described herein are susceptible to
various modifications and alternative forms, specific embodi-
ments have been shown by way of example in the drawings
and will be described in detail herein. However, the exem-
plary embodiments described herein are not intended to be
limited to the particular forms disclosed. Rather, the instant
disclosure covers all modifications, equivalents, and alterna-
tives falling within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The systems and methods described herein relate to profil-
ing web applications. Web applications may be accessed by
directing a web browser to a uniform resource locator (URL)
of'a web page. A web application may be an application that
is accessed by users over a network such as the Internet or an
intranet. Web applications may include computer software
applications coded in a browsersupported programming lan-
guage such as JAVASCRIPT® (JS), combined with a
browser-rendered markup language like hypertext markup
language (HTML), which is displayed on a web browser to
render the application executable.

Web applications may be served from a web server, where
the web browser may be configured as a client to the web
server. The web application model allows an administrator to
update and maintain web applications without distributing
and installing software on potentially thousands of client
computers. Updates to a web application may or may not
involve interaction with a server. Web applications may
include an inherent support for cross-platform compatibility.
Some examples of web applications include webmail, online
retail sales, online auctions, and wiki web pages. Additional
examples include online video games, audio applications,
video applications, interactive books, office software (i.e.,
word processors, online spreadsheets, and presentation
tools), project management, computer-aided design (CAD),
photo/video editing, point-of-sale, and the like. Some web
applications may include a single-page application (SPA), or
single-page interface (SPI), which may include a web appli-
cation or web site that fits on a single web page with the goal
of providing a more fluid user experience akin to a desktop
application.

Through JS, JAVA®, dynamic HTML (DHTML),
FLASH®, SILVERLIGHT® and other technologies, appli-
cation-specific methods such as drawing on the screen, play-
ing audio/video, and access to the keyboard and mouse may
be enabled via web applications. For instance, general pur-
pose techniques such as drag and drop of objects on a web
page displayed in a web browser may be enabled through web
applications. In some embodiments, client-side scripting may
be executed on a user’s device to add functionality, and to
create an interactive experience that does not require page
reloading. In some configurations, a web application may
coordinate client-side scripting with server-side technolo-
gies.

JS is an interpreted computer programming language. JS
was originally implemented as part of web browsers to allow
client-side scripts to interact with the user, control the

20

25

40

45

50

55

4

browser, communicate asynchronously and alter the docu-
ment content that is displayed. JS is a multi-paradigm lan-
guage, supporting objectoriented, imperative, and functional
programming styles.

To render a document such as an HTML page, most web
browsers use an internal model similar to the document object
model (DOM). The DOM is a cross-platform and language-
independent convention for representing and interacting with
objects in HTML, extensible HTML (XHTML), extensible
markup language (XML) documents, and the like. The nodes
of web pages may be organized in a tree structure, called the
DOM tree, with a topmost node named the “Document
object.” When an HTML page is rendered in browsers, the
browser downloads the HTML into local memory and auto-
matically parses it to display the page on screen. The DOM is
also the way JS transmits the state of the browser in HTML
pages. Objects in the DOM tree may be addressed and
manipulated by using methods on the objects. The public
interface of a DOM may be specified in its application pro-
gramming interface (API). An API, or “web-based API,” may
include a set of HT'TP request messages, along with a defini-
tion of the structure of response messages, which may include
an XML and/or JS object notation (JSON) format.

With the rich features supported by HTMLS5, mobile appli-
cations increasingly provide web versions of stand-alone
mobile applications. However, unlike mobile applications
controlled through an “app store,” a third party does not
provide a vetting process for the web versions (e.g., web
applications). Thus, unprofiled web applications present a
number of risks to users, including privacy and data security
risks. With a web application, a company can theoretically
track anything a user does while the user interacts with the
web application. Web applications also present risks of mal-
ware, spyware, and viruses. For instance, a web application
may present a phishing risk to users. Phishing is the act of
attempting to acquire information such as usernames, pass-
words, and credit card details (and sometimes, indirectly,
money) by masquerading as a trustworthy entity in an elec-
tronic communication. Phishing presents direct risks through
the use of stolen credentials and indirect risk to institutions
that conduct business on line through erosion of customer
confidence. Thus, users would benefit from a system that
categorizes web applications according to security vulner-
abilities, privacy risks, and/or suspicious HTMLS5 features.

FIG. 1 is a block diagram illustrating one embodiment of
an environment 100 in which the present systems and meth-
ods may be implemented. In some embodiments, the systems
and methods described herein may be performed on a single
device (e.g., device 102). For example, a profiling module
108 may be located on the device 102. Examples of devices
102 include mobile devices, smart phones, tablet computing
devices, personal computing devices, computers, servers, etc.

In some embodiments, a device 102 may communicate
with a web server 106 via a network 104. Example of net-
works 104 include, local area networks (LAN), wide area
networks (WAN), virtual private networks (VPN), wireless
networks (using 802.11, for example), cellular networks (us-
ing 3G and/or LTE, for example), etc. In some configurations,
the network 104 may include the internet.

In some configurations, the device 102 may include a pro-
filing module 108, a web client 110, and a display 112. In one
example, the device 102 may be coupled to a web server 106.
In some configurations, the web server 106 may serve a web
page 114. The web client 110 (e.g., a web browser or web-
enabled application) may render the web page 114 and dis-
play the rendered content on the display 112.

US 9,208,235 Bl

5

In one embodiment, the profiling module 108 may enable
the profiling, or categorization of the web page 114 based on
detected security risks and privacy issues. In some embodi-
ments, the profiling module 108 may determine whether web
page 114 requests access to a portion of device 102. In some
configurations, the profiling module 108 may determine to
what level access is requested (e.g., one-time access, repeti-
tive access, type of information requested, etc.). In some
embodiments, the profiling module 108 may determine
whether a certain feature is requested by web page 114 and
whether web page 114 implements a security check in rela-
tion to the certain feature. In some configurations, the profil-
ing module 108 may select a set of features often utilized in
malware and spyware attacks (i.e., phishing), and may detect
whether web page 114 utilizes the set of features.

FIG. 2 is a block diagram illustrating another embodiment
of an environment 200 in which the present systems and
methods may be implemented. The environment 200 may
include a device 102-a, a web server 106-a, and a server 206.

In some configurations, device 102-a and web server 106-a
may be examples of device 102 and web server 106, respec-
tively, illustrated in FIG. 1. For example, the device 102-a
may include the web client 110, the display 112, as well as an
application 202. It is noted that in some embodiments, the
device 102-a may not include a profiling module 108. In some
embodiments, both the device 102-a and the server 206 may
include the profiling module 108 where at least a portion of
the functions of the profiling module 108 may be performed
separately and/or concurrently on both the device 102-a and
the server 206. The depicted web server 106-a may include a
web application 204, which may include JS 208. In some
embodiments, web application 204 may be part of a web page
(e.g., web page 114 depicted in FIG. 1).

In some configurations, the application 202 may enable the
profiling of the web application 204 based on security risks
and privacy issues detected by the profiling module 108. In
some embodiments, the application 202 may operate in con-
junction with the profiling module 108. In one example, the
device 102 may be coupled to server 206 as well as web server
106-a, via the network 104. In some configurations, web
server 106 may serve a web application 204 to device 102-a.
Web client 110 may render the web application 204 and
display the rendered content on display 112.

In some embodiments, the server 206 may include the
profiling module 108. In one embodiment, the profiling mod-
ule 108 (in conjunction with application 202, for example)
may determine whether web application 204 requests access
to a portion of device 102. In some embodiments, profiling
module 108 profiles web application 204 independent of
device 102-a. For example, the server 206 may profile one or
more web applications available from one or more web serv-
ers. The server 206 may post the results of the profiles on a
web page (e.g., a web application “app store” with links to
various web applications) to allow user to view a description
of'the web application, indicating that the web application is
safe to execute, or that the web application includes potential
security and/or privacy risks (e.g., detected by the profiling
module 108). Likewise, in some embodiments, an adminis-
trator may post the results of the profiling of a web application
on the same web page from which the web application is
served in order to provide to users an independent third-party
review of the web application, allowing a user to see for
themselves what risks, if any, may be present in executing the
web application.

In some configurations, profiling module 108 may deter-
mine the type of access a web application requests when
executed (e.g., one-time access, repetitive access, type of

15

20

35

40

45

6

information requested, etc.). In some embodiments, the pro-
filing module 108 may determine whether a certain feature is
requested and whether the web application 204 implements a
security check in relation to the certain feature. In some
configurations, the profiling module 108 may select a set of
features often utilized in malware and spyware attacks (i.e.,
phishing), and may detect whether the web application 204
utilizes the set of features.

FIG. 3 is a block diagram illustrating one example of a
profiling module 108-a. The profiling module 108-a may be
one example of the profiling module 108 depicted in FIGS. 1
and/or 2. As depicted, the profiling module 108-a may
include a web crawling module 302 and a JS analyzing mod-
ule 304.

In some configurations, the web crawling module 302 may
extract the content and resources of web page 114. The con-
tent and resources of the web page 114 may include web
application 204, which may include JS 208. The web crawl-
ing module 302 may extract JAVASCRIPT® (e.g., IS 208)
encoded in the web application 204. In some embodiments,
the web crawling module 302 may extract the JS from the
main frame of the web page as well as the JS for other
embedded frames. In order to mimic an actual request sent
from a computing device to execute the web application, in
some embodiments, web crawling module 302 may send the
URL of the web application to a web browser engine (i.e., a
layout engine, rendering engine, or other similar software
designed to allow web browsers to render web pages, such as
webkit).

In some embodiments, web crawling module 302 may
analyze the web application’s DOM structure in order to
extract the JS encoded in the web application (e.g., extract
only portions of JS based on the analysis of the DOM struc-
ture). In some configurations, one or more types of encoded
JS may be extracted. For instance, web crawling module 302
may extract in-line JS, in-line events, and external JS. For
instance, in-line JS may be extracted directly from the DOM
structure provided by the web browser engine (e.g., webkit),
whereas external JS may be obtained from a downloaded web
resource (e.g., a hyperlink to external IS included in the
HTML code of the web page). In some embodiments, web
crawling module 302 converts code associated with DOM
element information obtained from analyzing the DOM
structure into in-line events. The web crawling module 302
may associate the extracted JS with a URL of the enclosing
frame. The web crawling module 302 may maintain the
frame’s URL in order to show a user whether a detected
feature is executed by the simulated web application or part of
an embedded service provided by another web application.

Based on the information generated by the web crawling
module 302, the JS analyzing module 304 may be configured
to simulate the web application executions. In some embodi-
ments, the web crawling module 302 may pass the extracted
JS and the enclosing frame URL to the JS analyzing module
304. In some configurations, the JS analyzing module 304
may simulate the extracted JS based on potential user inter-
actions detected within the web application.

In some embodiments, the JS analyzing module 304 may
determine what HTMLS5 features may be used by the web
application in order to detect how the features are utilized in
relation to risks to a user, the user’s computing device, and
data stored on the computing device. For instance, the JS
analyzing module 304 may determine whether the behavior
of the simulated JS exhibits privacy concerns, security vul-
nerabilities, and/or social engineering concerns.

In some configurations, the JS analyzing module 304 may
include mock object creation, symbolic execution, and/or

US 9,208,235 Bl

7

static analysis in the simulation of the extracted JS. Mock
objects may be simulated objects that mimic the behavior of
objects in the web application. For example, a mock object
may mimic an object from the DOM structure of the web page
(e.g., a text field for entering credit card information). Thus,
JS analyzing module 304 may simulate via mock objects user
interaction without actually interacting with the web applica-
tion. However, in such cases, the web page environment may
not be available to the JS analyzing module 304. Thus, JS
analyzing module 304 may generate mock objects for the web
page environment, with the same interfaces as the objects
they mimic, so that the JS code may interact with the envi-
ronment as it would in its normal, non-simulated execution.
Particularly for capturing the HTMLS5 API utilization, IS
analyzing module 304 may generate mock objects for
HTMLS5 objects and APIs based on the analyzed DOM struc-
ture in order to simulate a complete set of functionalities.

In some embodiments, simulation of the extracted IS by
the JS analyzing module 304 may include symbolic execu-
tion, or symbolic evaluation. Symbolic execution may refer to
the analysis of programs by tracking symbolic rather than
actual values. In the JS analyzing module 304, since all the
user input and server response are simulated without the
actual value, the symbolic execution may be utilized to ana-
lyze web application execution behavior with all the possible
inputs that take the same execution path. A JS interpreter may
be modified to include the mock objects and to accommodate
the symbolic value to ensure that the information carried with
the symbolic value is propagated through code execution.

In some embodiments, JS analyzing module 304 may
implement static analysis techniques in the simulation of the
extracted JS. Via static analysis, JS analyzing module 304
may generate a summarization of program behavior over all
execution paths. For each testing condition, JS analyzing
module 304 may consider the effect of taking each branch. JS
analyzing module 304 may summarize the effects of each
branch.

Thus, in some embodiments, JS analyzing module 304
may simulate a web application’s behavior and capture which
features (e.g., HTMLS features) are utilized by the web appli-
cation. For the privacy related features such as access to a
global positioning system (GPS) or camera access on a user’s
computing device (e.g., device 102), JS analyzing module
304 may determine whether the web application requests
unauthorized access to a user’s computing device. For
example, JS analyzing module 304 may determine whether
the web application requests to use certain APIs associated
with local access of the user’s computing device (e.g., access
to user’s photos, user’s contacts, user’s location, etc.). Addi-
tionally, or alternatively, JS analyzing module 304 may deter-
mine whether the web application requests authorized access
to the user’s computing device. JS analyzing module 304 may
send a notification to be displayed on the user’s computing
device to alert the user to the one or more types of access
requested by the web application, both authorized and unau-
thorized (e.g., one time access, repeated access, coarse-level
GPS, fine-level GPS, etc.).

In some embodiments, JS analyzing module 304 may ana-
lyze whether a certain API is requested by the web application
and whether there exists certain security checks before or
after the API access. In some configuration, JS analyzing
module 304 may select a set of features often utilized by
malware (e.g., social engineering attacks, phishing, etc.) and
may detect whether the web application utilizes the common
set of features. Upon determining that the web application
utilizes one or more of the set of features, JS analyzing mod-
ule 304 may send a notification to be displayed on the user’s

10

15

20

25

30

35

40

45

50

55

60

65

8

computing device to alert the user to the potential malware
and/or spyware detected in the simulation of the web appli-
cation.

FIG. 4 is a block diagram illustrating one example of a web
crawling module 302-a. The web crawling module 302-a
may be one example of the web crawling module 302 illus-
trated in FIG. 3. As depicted, the web crawling module 302-a
may include an extracting module 402 and an analyzing mod-
ule 404.

In one embodiment, the web crawling module 302-a may
crawl a web page containing JS (e.g., web application 204). In
some configurations, the extracting module 402 may extract
at least a portion of IS from the crawled web page (e.g., IS
206). In some embodiments, the analyzing module 404 may
analyze a DOM structure of the web page. The portion of JS
extracted by the extracting module 402 may be based on a
result of the analysis of the DOM structure. Thus, the web
crawling module 302-¢ may provide information (e.g.,
extracted JS, analyzed DOM structure, etc.) to the JS analyz-
ing module 304 in order to enable the JS analyzing module
304 to perform an automated simulation of a web application.

FIG. 5 is a block diagram illustrating one example of'a JS
analyzing module 304-a. The JS analyzing module 304-a
may be one example of the JS analyzing module 304 illus-
trated in FIG. 3. As depicted, the JS analyzing module 304-a
may include a JS interpreter module 502, a user-interaction
detection module 504, an access detection module 506, and
an API detection module 508.

In one embodiment, JS analyzing module 304-a may
execute an automated simulation of the JS extracted by the
web crawling module 302. In some configurations, JS ana-
lyzing module 304-a may generate a mock object that mimics
an object from the DOM structure of the web page. In some
embodiments, JS analyzing module 304-a may generate a
symbolic value configured to interact with the mock object.
The execution of the automated simulation of the extracted JS
by the JS analyzing module 304-a may include the mock
object and the symbolic value.

Without modification, a JS interpreter may reject symbolic
evaluation (e.g., mock objects and symbolic values). Thus, in
some embodiments, JS analyzing module 304-a may modify
a IS interpreter (e.g., JS interpreter module 502) to incorpo-
rate the mock object and to accept the symbolic value. In
some configurations, JS interpreter module 502 may track the
propagation of the symbolic value throughout the execution
of the automated simulation of the extracted JS by the IS
analyzing module 304-a.

In some embodiments, the user-interaction detection mod-
ule 504 may determine a user-interaction driven event based
onthe analysis of the DOM structure by the analyzing module
404. A user-interaction driven event may be those elements of
the web application that allow a user to interact with the web
application (e.g., enter information in the web application,
send a command to the web application, download a file from
the web application, etc.). In some configurations, user-inter-
action detection module 504 may detect each execution path
of the user-interaction driven event. In some embodiments,
user-interaction detection module 504 may estimate the effect
of each detected execution path of the user-interaction driven
event and summarize the estimated effects of the detected
execution paths. In some embodiments, user-interaction
detection module 504 may display information related to the
results of the summary of the estimated effects ofthe detected
execution paths on the display 112.

In some configurations, access detection module 508 may
determine, based on the automated simulation of the
extracted JS, whether the JS, when executed, makes a request

US 9,208,235 Bl

9

to access a portion of a user’s device. Access detection mod-
ule 508 may determine whether the access is authorized and
determine the type of access requested by the simulated JS.
For example, access detection module 508 may determine at
least a level (i.e., one time, repeated, etc.) and a type (i.e.,
photos, contacts, location, etc.) of access requested by the JS.

In some embodiments, API detection module 508 may
detect, based on the automated simulation of the extracted IS,
whether a predetermined type of AP is requested when the JS
executes. In one embodiment, API detection module 508 may
determine whether the JS, when executed, implements a pre-
determined security check in relation to the JS accessing the
requested API during simulation. In some configurations, API
detection module 508 may select one or more APIs known to
be used in association with malware (e.g., phishing, spyware,
etc.). In some embodiments, API detection module 508 may
determine, based on the automated simulation of the
extracted JS, whether the JS includes code to utilize the one or
more selected APIs. Upon determining that the JS, when
executed, utilizes the one or more selected APIs, the API
detection module 508 may send a notification to be displayed
on the user’s computing device to alert the user of the web
application including potential malware.

FIG. 6 is a flow diagram illustrating one embodiment of a
method 600 for profiling a web application. In some configu-
rations, the method 600 may be implemented by the profiling
module 108 illustrated in FIGS. 1, 2, and/or 3. In some con-
figurations, the method 600 may be implemented by the
application 202 illustrated in FIG. 2.

At block 602, a web page containing JS is crawled. At
block 604, at least a portion of the JS is extracted from the
crawled web page. At block 606, an automated simulation of
the extracted JS is executed.

FIG. 7 is a flow diagram illustrating one embodiment of a
method 700 for implementing an automated simulation of JS.
In some configurations, the method 700 may be implemented
by the profiling module 108 illustrated in FIGS. 1, 2, and/or 3.
In some configurations, the method 700 may be implemented
by the application 202 illustrated in FIG. 2.

In some embodiments, a web page (e.g., web page 114)
may be crawled. The web page may include a web application
(e.g., web application 204) that includes at least HTML and
JS (e.g. IS 206). At block 702, at least a portion of JS may be
extracted from the crawled web page. At block 704, a docu-
ment object model (DOM) structure of the web page maybe
analyzed. The portion of the extracted JS may be based at
least in part on a result of the analysis of the capital DOM
structure. At block 706, a mock object that mimics an object
from the DOM structure of the web page may be generated. At
block 708, a symbolic value configured to interact with the
mock object may be generated. The execution of the auto-
mated simulation of the extracted JS may include utilizing the
symbolic value in relation to the mock object. At block 710, a
JS interpreter may be modified to incorporate the mock object
and to accept the symbolic value (i.e., not reject the symbolic
value or mock object). At block 712, the propagation of the
symbolic value may be tracked throughout the execution of
the automated simulation of the extracted JS.

FIG. 8 is a flow diagram illustrating one embodiment of a
method 800 for static analysis. In some configurations, the
method 800 may be implemented by the profiling module 108
illustrated in FIGS. 1, 2, and/or 3. In some configurations, the
method 800 may be implemented by the application 202
illustrated in FIG. 2.

At block 802, a DOM structure of a webpage may be
analyzed. A portion of extracted JS may be based at least in
part on a result of the analysis of the DOM structure. At block

25

30

40

45

10

804, auser-interaction driven event may be identified based at
least in part on the analysis of the DOM structure. In some
embodiments, the user-interaction driven event may be asso-
ciated with at least a portion of the extracted IS, and may
include code that allows the user to interact with the JS (i.e.,
enter information, download a file, enter commands, etc.). At
block 806, one or more execution paths of the user-interaction
driven event may be detected. At block 808, an effect of the
one or more detected execution paths of the user-interaction
driven event may be estimated. At block 810, the estimated
effects of the detected execution paths may be summarized.

FIG. 9 is a flow diagram illustrating one embodiment of a
method 900 for detecting unauthorized access by aweb appli-
cation. In some configurations, the method 900 may be imple-
mented by the profiling module 108 illustrated in FIGS. 1, 2,
and/or 3. In some configurations, the method 900 may be
implemented by the application 202 illustrated in FIG. 2.

At block 902, an automated simulation of JS extracted
from a web page may be executed. At block 904, a determi-
nation may be made, based on the automated simulation of
the extracted JS, whether the JS, when executed, makes a
request to access a portion of a device (e.g., device 102). At
block 906, a determination may be made whether the access
is authorized. Atblock 908, at least a level and atype of access
requested by the JS may be determined.

FIG. 10 is a flow diagram illustrating one embodiment of
another 1000 method for determining security vulnerabilities
of a web application. In some configurations, the method
1000 may be implemented by the profiling module 108 illus-
trated in FIGS. 1, 2, and/or 3. In some configurations, the
method 1000 may be implemented by the application 202
illustrated in FIG. 2.

At block 1002, an automated simulation of JS extracted
from a web page may be executed. At block 1004, it may be
detected, based on the automated simulation of the extracted
JS, whether a predetermined type of application program-
ming interface (API) is requested by the JS, when the IS is
executed. At block 1006, a determination may be made
whether the JS implements a predetermined security check in
relation to the JS accessing the requested API.

FIG. 11 is a flow diagram illustrating one embodiment of
another method for detecting a potential phishing attack from
a web application. In some configurations, the method 1100
may be implemented by the profiling module 108 illustrated
in FIGS. 1, 2, and/or 3. In some configurations, the method
1100 may be implemented by the application 202 illustrated
in FIG. 2.

At block 1102, an automated simulation of JS extracted
from a web page may be executed. At block 1104, one or more
APIs known to be used in association with malware may be
selected. At block 1106, a determination may be made, based
on the automated simulation of the extracted JS, whether the
JS utilizes the one or more selected APIs. In some embodi-
ments, a message may be displayed on a user’s computing
device that includes information related to the one or more
APIs utilized by the JS, alerting the user to the potential for
malware in executing the web application.

FIG. 12 depicts ablock diagram of a computer system 1200
suitable for implementing the present systems and methods.
The depicted computer system 1200 may be one example of
a server 206 depicted in FIG. 2. Alternatively, the system
1200 may be one example of a device 102 depicted in FIGS.
1 and/or 2. Computer system 1200 includes a bus 1202 which
interconnects major subsystems of computer system 1200,
such as a central processor 1204, a system memory 1206
(typically RAM, but which may also include ROM, flash
RAM, or the like), an input/output controller 1208, an exter-

US 9,208,235 Bl

11

nal audio device, such as a speaker system 1210 via an audio
output interface 1212, an external device, such as a display
screen 1214 via display adapter 1216, serial ports 1218 and
mouse 1246, a keyboard 1222 (interfaced with a keyboard
controller 1224), multiple USB devices 1226 (interfaced with
a USB controller 1228), a storage interface 1230, a host bus
adapter (HBA) interface card 1236A operative to connect
with a Fibre Channel network 1238, ahost bus adapter (HBA)
interface card 1236B operative to connectto a SCSI bus 1240,
and an optical disk drive 1242 operative to receive an optical
disk 1244. Also included are a mouse 1246 (or other point-
and-click device, coupled to bus 1202 via serial port 1218), a
modem 1248 (coupled to bus 1202 via serial port 1220), and
a network interface 1250 (coupled directly to bus 1202).

Bus 1202 allows data communication between central pro-
cessor 1204 and system memory 1206, which may include
read-only memory (ROM) or flash memory (neither shown),
and random access memory (RAM) (not shown), as previ-
ously noted. The RAM is generally the main memory into
which the operating system and application programs are
loaded. The ROM or flash memory can contain, among other
code, the Basic Input-Output system (BIOS) which controls
basic hardware operation such as the interaction with periph-
eral components or devices. For example, a profiling module
108-5 to implement the present systems and methods may be
stored within the system memory 1206. The profiling module
108-5 may be one example of the profiling module 108
depicted in FIGS. 1, 2, and/or 3. Applications resident with
computer system 1200 are generally stored on and accessed
via a non-transitory computer readable medium, such as a
hard disk drive (e.g., fixed disk 1252), an optical drive (e.g.,
optical drive 1242), or other storage medium. Additionally,
applications can be in the form of electronic signals modu-
lated in accordance with the application and data communi-
cation technology when accessed via network modem 1248
or interface 1250.

Storage interface 1230, as with the other storage interfaces
of computer system 1200, can connect to a standard computer
readable medium for storage and/or retrieval of information,
such as a fixed disk drive 1252. Fixed disk drive 1252 may be
a part of computer system 1200 or may be separate and
accessed through other interface systems. Modem 1248 may
provide a direct connection to a remote server via a telephone
link or to the Internet via an internet service provider (ISP).
Network interface 1250 may provide a direct connection to a
remote server via a direct network link to the Internet via a
POP (point of presence). Network interface 1250 may pro-
vide such connection using wireless techniques, including
digital cellular telephone connection, Cellular Digital Packet
Data (CDPD) connection, digital satellite data connection or
the like.

Many other devices or subsystems (not shown) may be
connected in a similar manner (e.g., document scanners, digi-
tal cameras and so on). Conversely, all of the devices shown in
FIG. 12 need not be present to practice the present systems
and methods. The devices and subsystems can be intercon-
nected in different ways from that shown in FIG. 12. The
operation of at least some of the computer system 1200 such
as that shown in FIG. 12 is readily known in the art and is not
discussed in detail in this application. Code to implement the
present disclosure can be stored in a non-transitory computer-
readable medium such as one or more of system memory
1206, fixed disk 1252, or optical disk 1244. The operating
system provided on computer system 1200 may be
MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®,
or another known operating system.

10

15

20

25

30

35

40

45

50

55

60

65

12

Moreover, regarding the signals described herein, those
skilled in the art will recognize that a signal can be directly
transmitted from a first block to a second block, or a signal can
be modified (e.g., amplified, attenuated, delayed, latched,
buffered, inverted, filtered, or otherwise modified) between
the blocks. Although the signals of the above described
embodiment are characterized as transmitted from one block
to the next, other embodiments of the present systems and
methods may include modified signals in place of such
directly transmitted signals as long as the informational and/
or functional aspect of the signal is transmitted between
blocks. To some extent, a signal input at a second block can be
conceptualized as a second signal derived from a first signal
output from a first block due to physical limitations of the
circuitry involved (e.g., there will inevitably be some attenu-
ation and delay). Therefore, as used herein, a second signal
derived from a first signal includes the first signal or any
modifications to the first signal, whether due to circuit limi-
tations or due to passage through other circuit elements which
do not change the informational and/or final functional aspect
of' the first signal.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

Furthermore, while various embodiments have been
described and/or illustrated herein in the context of fully
functional computing systems, one or more of these exem-
plary embodiments may be distributed as a program product
in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the dis-
tribution. The embodiments disclosed herein may also be
implemented using software modules that perform certain
tasks. These software modules may include script, batch, or
other executable files that may be stored on a computer-
readable storage medium or in a computing system. In some
embodiments, these software modules may configure a com-
puting system to perform one or more of the exemplary
embodiments disclosed herein.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
present systems and methods and their practical applications,
to thereby enable others skilled in the art to best utilize the

US 9,208,235 Bl

13

present systems and methods and various embodiments with
various modifications as may be suited to the particular use
contemplated.

Unless otherwise noted, the terms “a” or “an,” as used in
the specification and claims, are to be construed as meaning
“at least one of” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.” In addition, the term “based on” as
used in the specification and the claims is to be construed as
meaning “based at least upon.”

What is claimed is:

1. A computer-implemented method for profiling a web
application, the method comprising:

crawling a web page containing JavaScript (JS);

extracting at least a portion of the JS from the crawled web

page;

executing an automated simulation of the extracted JS;

analyzing a document object model (DOM) structure of the

web page, wherein the portion of extracted IS is based at
least in part on a result of the analysis of the DOM
structure;
generating a mock object that mimics an object from the
DOM structure of the web page; and

generating a symbolic value configured to interact with the
mock object, wherein the execution of the automated
simulation of the extracted JS comprises utilizing the
symbolic value in relation to the mock object.

2. The method of claim 1, further comprising:

modifying a JS interpreter to incorporate the mock object

and to accept the symbolic value; and

tracking, by the modified JS interpreter, the propagation of

the symbolic value throughout the execution of the auto-
mated simulation of the extracted JS.

3. The method of claim 1, further comprising:

identifying a user-interaction driven event based at least in

part on the analysis of the DOM structure; and
detecting one or more execution paths of the user-interac-
tion driven event.

4. The method of claim 3, further comprising:

estimating an effect of the one or more detected execution

paths of the user-interaction driven event; and
summarizing the estimated effects of the detected execu-
tion paths.

5. The method of claim 1, further comprising:

determining, based on the automated simulation of the

extracted JS, whether the JS makes a request to access a
portion of a device;

determining whether the access is authorized; and

determining at least a level and a type of access requested

by the JS.

6. The method of claim 1, further comprising:

detecting, based on the automated simulation of the

extracted JS, whether a predetermined type of applica-
tion programming interface (API) is requested by the JS;
and

determining whether the JS implements a predetermined

security check in relation to the JS accessing the
requested API.
7. The method of claim 1, further comprising:
selecting one or more application programming interfaces
(APIs) known to be used in association with malware;

determining, based on the automated simulation of the
extracted JS, whether the JS utilizes the one or more
selected APIs.

8. A computing device configured to profile a web appli-
cation, comprising:

20

30

35

40

45

60

65

14

a processor;
memory in electronic communication with the processor;
instructions stored in the memory, the instructions being

executable by the processor to:

crawl a web page containing JavaScript (JS);

extract at least a portion of the IS from the crawled web
page;

execute an automated simulation of the extracted JS;

analyze a document object model (DOM) structure of
the web page, wherein the portion of extracted IS is
based at least in part on a result of the analysis of the
DOM structure;

generate a mock object that mimics an object from the
DOM structure of the web page; and

generate a symbolic value configured to interact with the
mock object, wherein the execution of the automated
simulation of the extracted JS comprises utilizing the
symbolic value in relation to the mock object.

9. The computing device of claim 8, wherein the instruc-
tions are executable by the processor to:

modify a IS interpreter to incorporate the mock object and

to accept the symbolic value; and

track, by the modified JS interpreter, the propagation of the

symbolic value throughout the execution of the auto-
mated simulation of the extracted JS.

10. The computing device of claim 8, wherein the instruc-
tions are executable by the processor to:

identify a user-interaction driven event based at least in part

on the analysis of the DOM structure; and

detect one or more execution paths of the user-interaction

driven event.

11. The computing device of claim 10, wherein the instruc-
tions are executable by the processor to:

estimate an effect of the one or more detected execution

paths of the user-interaction driven event; and
summarize the estimated effects of the detected execution
paths.

12. The computing device of claim 8, wherein the instruc-
tions are executable by the processor to:

determine, based on the automated simulation of the

extracted JS, whether the JS makes a request to access a
portion of a device;

determine whether the access is authorized; and

determine at least a level and a type of access requested by

the JS.

13. The computing device of claim 8, wherein the instruc-
tions are executable by the processor to:

detect, based on the automated simulation of the extracted

JS, whether a predetermined type of application pro-
gramming interface (API) is requested by the JS; and
determine whether the JS implements a predetermined

security check in relation to the JS accessing the
requested API.
14. The computing device of claim 8, wherein the instruc-
tions are executable by the processor to:
select one or more application programming interfaces
(APIs) known to be used in association with malware;

determine, based on the automated simulation of the
extracted JS, whether the JS utilizes the one or more
selected APIs.

15. A computer-program product for profiling, by a pro-
cessor, a web application, the computer-program product
comprising a non-transitory computer-readable medium stor-
ing instructions thereon, the instructions being executable by
the processor to:

crawl a web page containing JavaScript (JS);

US 9,208,235 Bl

15

extract at least a portion of the JS from the crawled web
page;

execute an automated simulation of the extracted IS;

analyze a document object model (DOM) structure of the
web page, wherein the portion of extracted IS is based at
least in part on a result of the analysis of the DOM
structure;

generate a mock object that mimics an object from the
DOM structure of the web page; and

generate a symbolic value configured to interact with the
mock object, wherein the execution of the automated
simulation of the extracted JS comprises utilizing the
symbolic value in relation to the mock object.

16. The computer-program product of claim 15, wherein

the instructions are executable by the processor to:

modify a JS interpreter to incorporate the mock object and
to accept the symbolic value; and

track, by the modified JS interpreter, the propagation of the
symbolic value throughout the execution of the auto-
mated simulation of the extracted JS.

#* #* #* #* #*

10

15

20

16

